Por Douglas Wallace, Gerente de Ventas de Distrito, América Latina y El Caribe (Excepto Brasil y México) en Pure Storage.
Para las empresas, la IA generativa es como una iniciativa
de transformación digital altamente comprimida, y las cosas se mueven rápido. A
medida que aumenta la adopción, la pregunta no es cómo las empresas adoptarán
la IA generativa, sino si sus infraestructuras de datos podrán admitirla.
Hay un patrón en lo que respecta a la adopción de
innovaciones y tendencias por parte de las empresas: primero haga la prueba
piloto, luego planifique. El "cómo" puede ser una ocurrencia tardía
(simplemente basta preguntarle a TI después de los últimos años), pero a menudo
es lo más importante. El éxito con una nueva tecnología depende en última
instancia de si tu infraestructura puede sostenerla.
Con la IA generativa, una cosa está clara: las
infraestructuras de datos deben subir de nivel ahora.
GenAI no es una novedad: es la transformación digital sobre
rieles
Se ha dicho que toda empresa tiene que ser una empresa de
seguridad. Ahora, cada empresa también tendrá que ser una empresa preparada
para la IA.
¿Por qué? Por primera vez en la historia, se ha derribado
la barrera de entrada de AI. Ya no es la caja de arena de los científicos de
datos; es para todos. Recién estamos comenzando.
Los casos de uso de IA generativa proliferan a diario en el
espacio empresarial. Compañías como Databricks, que adquirió MosaicML, traerán
modelos de IA generativos y seguros a las empresas, mientras que la adquisición
de Neeva por parte de Snowflake traerá inteligencia comercial impulsada por LLM
a los datos empresariales.
Todo esto señala la magnitud de su disrupción para cada
industria. Y en tiempos de recesión, la eficiencia que puede ofrecer es muy,
muy atractiva. La IA asequible y accesible se convertirá en otra herramienta,
como SaaS (ya se ofrece como un servicio ahora y está creciendo agresivamente).
Pero para muchos casos de uso empresarial, la pregunta no
es tanto si se implementará la IA, sino cómo y cómo se administrarán los datos.
Es probable que los modelos de lenguaje (LLM) evolucionen hacia servicios y
aplicaciones basados en la nube como CRM y ERM, lo que creará otra carga de
trabajo que las empresas deberán integrar en estados de datos ya complejos.
La simplicidad en la gestión de datos será más importante
que nunca.
El obstáculo: del dominio público a los datos privados
Las herramientas de IA generativa prosperan con los datos.
Cuantos más y mejores datos reciben, más inteligentes se vuelven. Para las
empresas, aprovecharlos donde cuenta (internamente, con fines de propiedad)
requiere datos nuevos más allá del dominio público. Y todo lo que no se puede
raspar está bajo llave por una buena razón.
Casi todas las organizaciones están explorando sus propios
modelos y casos de uso de LLM. Los grandes proveedores ya están en una carrera
armamentista de Inteligencia Artificial Generativa (IAG). Pero si bien todos
los líderes consideran cómo aprovecharlo, también deben considerar cómo hacerlo
mientras retienen el control de su recurso más preciado: sus datos.
Para algunos, esto significa llevar el cálculo de la IA a
los datos, y no al revés. Para hacer eso, muchas organizaciones buscan
construir sus propios modelos. Los proveedores están en una carrera para
construir una matriz lista para IA y una cadena de herramientas de extremo a
extremo que pueda respaldar negocios de IA generativa. La nube es una opción,
pero la IA de producción en la nube puede volverse costosa con el tiempo. Las
consideraciones del costo total de propiedad (TCO) de las soluciones en la nube
frente a las locales son importantes y, a menudo, las soluciones locales eficientes
y de alto rendimiento pueden proporcionar ahorros de costos a largo plazo
mientras mantienen a los científicos de datos completamente productivos.
Aquí también es donde la infraestructura de datos de una
organización debe estar preparada para el futuro, ser simple y lo
suficientemente escalable. Alojar y proteger esos datos mientras los hace lo
suficientemente ágiles para los flujos de trabajo de IA es clave, y no todo el
almacenamiento de datos está a la altura de la tarea.
¿Cómo afectarán los datos los copilotos de IA?
Primero, está el volumen. La IA generativa será una de las
innovaciones más disruptivas para afectar los datos globales. Las estimaciones
conservadoras predijeron un crecimiento de datos compuesto del 2 % año tras año
a partir de 2022, pero eso fue antes de que explotara ChatGPT y la generación
de imágenes.
Consideremos esto: los diseñadores gráficos no pueden crear
físicamente 300 imágenes únicas en un día, pero las plataformas de imágenes de
IA sí pueden. Las capacidades de la IA no están limitadas por la realidad
física, pero los datos que crea sí lo están. Y necesita vivir en algún lugar.
Luego, está la accesibilidad. De acuerdo con el estudio AI
StrategiesView 2022 de IDC, los responsables de la toma de decisiones y
personas influyentes de TI señalaron que "la disponibilidad y
accesibilidad seguras de los datos son fundamentales para escalar las
iniciativas de IA". El disco no puede seguir el ritmo. Soluciones
all-flash empresariales que están optimizadas para IA, es decir, tienen una
arquitectura de alto rendimiento, paralela y escalable con tecnología de
reducción de datos como la compresión; ofrecer actualizaciones sin
interrupciones; y puede escalar el rendimiento y la capacidad por separado.
La IA y el machine learning (ML) son los proyectos que más
datos consumen en la historia. Los datos no estructurados son notoriamente
difíciles de agregar y analizar, especialmente fotos y videos. Requiere una
plataforma capaz de realizar análisis en una variedad de perfiles de datos,
todos a la vez, o siempre que se requieran estas capacidades.
Y la verdad es que, si bien a todos nos gustaría explorar
más proyectos de IA, también nos gustaría reducir las huellas en nuestros
centros de datos. La energía para alimentarlos no es infinita, ni barata. Solo
hay una forma para que las empresas avancen con la IA sin sacrificar la
eficiencia: flash.
Cómo construir un centro de datos listo para IA generativa
La explosión de los casos de uso de IAG hacen que nos
preguntemos: ¿Cómo terminarán luciendo las empresas de infraestructura de datos
y bases de datos en el futuro si la IA tiene que convertirse en parte de la
infraestructura central de cada empresa?
Centros de datos all-flash, por ejemplo.
A su vez, medida que las organizaciones preguntan ¿Qué hará
la IA generativa por mi negocio? también deberán preguntarse ¿Mi
infraestructura de TI estará lista para esto?
No todos necesitarán su propio LLM. Pero ya sea que esté
entrenando sus propios modelos o aprovechando IAG a través de una aplicación o
la nube, el almacenamiento de datos moderno será fundamental para la historia.
Una plataforma de almacenamiento robusta y eficiente para IA como
FlashBlade//S™ puede manejar todos los datos y tareas que se le presentan desde
una miríada de potentes GPU NVIDIA.
Para aprovechar al máximo su infraestructura de IA, una
plataforma de almacenamiento de alto rendimiento y baja latencia que sea
escalable, maneje una gran cantidad de datos a la vez (gran ancho de banda) y
pueda compartir información entre muchos procesos de aplicaciones en paralelo
es clave para optimizar la IA. resultados con el TCO más bajo.
AIRI//S™ combina estrechamente NVIDIA DGX, las redes de
NVIDIA y FlashBlade//S para proporcionar una infraestructura preparada para IA
aún más rápido, ofreciendo una solución probada previamente que permite a los
equipos de IA y TI centrarse en la innovación, no en la implementación.